GT5Y saies Miniature Electronic Timers

Four Selectable Operation Modes. Six Selectable Time Ranges. Delayed Output 4PDT/3A or DPDT/5A.

- Four operation modes: ON Delay, Interval ON, Cycle OFF, and Cycle ON
- Repeat error: $\pm 0.2 \% \pm 20 \mathrm{~ms}$ maximum
- Miniature size
- LED indicators for output and power
- Complies with safety standards. UL/c-UL listed. EN compliant.

Applicable Standards	Mark	File No. or Organization
UL508 CSA C22.2 No.14	UL)	
EN61812-1	UL/C-UL Listed File No. E55996	

Note: When using as a UL Listing approved product, use IDEC timer sockets under the below conditions.
SY4S-05*, SM2S-05* (Specify A, B, C, DF, DN, or U in place of *)

- Wire conductor temperature rating: $60^{\circ} \mathrm{C}$ min.
- Copper wire only: AWG14 max. ($2 \mathrm{~mm}^{2}$ max.), AWG14 max. ($0.9 \mathrm{~mm}^{2}$ max.)
- Tightening torque: 0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$

SU4S-11L, SU2S-11L

- Wire conductor temperature rating: $60^{\circ} \mathrm{C} \mathrm{min}$.
- Copper wire only: AWG16 max. (solid wire $1.5 \mathrm{~mm}^{2}$ max., stranded wire $1.25 \mathrm{~mm}^{2}$ max.), AWG18 max. ($0.9 \mathrm{~mm}^{2}$ max.)

Package Quantity: 1

(1) Operation Mode	Contact	Output	Time Ranges	Operating Voltage	Part No. (Ordering No.)
A: ON Delay	DPDT	$\begin{aligned} & 220 \mathrm{~V} \text { AC/ } \\ & 30 \mathrm{DC}, 5 \mathrm{~A} \end{aligned}$	0.1 S to 10H	100 to 120V AC	GT5Y-2SN1A100
			0.15 to 30H		GT5Y-2SN3A100
			0.15 to 60 H		GT5Y-2SN6A100
			0.15 to 10H	200 to 240V AC	GT5Y-2SN1A200
			0.1 S to 30 H		GT5Y-2SN3A200
			0.15 to 10H	12V DC	GT5Y-2SN1D12
			0.15 to 30H		GT5Y-2SN3D12
			0.15 to 60 H		GT5Y-2SN6D12
B: Interval ON			0.15 to 10H	24 V DC	GT5Y-2SN1D24
			0.15 to 30 H		GT5Y-2SN3D24
			0.15 to 60 H		GT5Y-2SN6D24
C: Cycle OFF	4PDT	30V DC, 3A	0.15 to 10H	100 to 120V AC	GT5Y-4SN1A100
			0.1 S to 30H		GT5Y-4SN3A100
			0.15 to 60 H		GT5Y-4SN6A100
D: Cycle ON			0.15 to 10H	200 to 240V AC	GT5Y-4SN1A200
			0.15 to 30H		GT5Y-4SN3A200
			0.15 to 60 H		GT5Y-4SN6A200
			0.15 to 30 H	12V DC	GT5Y-4SN3D12
			0.15 to 10H	24V DC	GT5Y-4SN1D24
			0.15 to 30H		GT5Y-4SN3D24
			0.15 to 60H		GT5Y-4SN6D24

Time Ranges

Code	Scale	(2) Time Range Indication	Time Range
1: 0.1 S to 10 H	0 to 1	1S	0.1 sec to 1 sec
		10S	0.2 sec to 10 sec
		1M	1 sec to 1 min
		10M	10 sec to 10 min
		1 H	1 min to 1 hr
		10 H	10 min to 10 hr
3: 0.1 S to 30 H	0 to 3	1 S	0.1 sec to 3 sec
		10S	0.5 sec to 30 sec
		1 M	3 sec to 3 min
		10M	30 sec to 30 min
		1 H	3 min to 3 hr
		10H	30 min to 30 hr
6: 0.15 to 60 H	0 to 6	1 S	0.1 sec to 6 sec
		10S	1 sec to 60 sec
		1M	6 sec to 6 min
		10M	1 min to 60 min
		1H	6 min to 6 hr
		10 H	60 min to 60 hr

Note: S and M of the time range indicate second, and minute respectively.

Contact Ratings

Part No.			GT5Y-4	GT5Y-2
Contact Configuration			4PDT	DPDT
Rated Load	Resistive Load		220 V AC, 3A/30V DC, 3A	220 V AC, 5A/30V DC, 5A
	Inductive Load	$\cos \emptyset=0.3, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$	220 V AC, $0.8 \mathrm{~A} / 30 \mathrm{~V}$ DC, 1.5A	220 V AC, 2A/30V DC, 2.5A
Maximum Switching Voltage			250 V AC/125V DC	250 V AC/125V DC
Maximum Switching Current			3A	5 A (Note)
Maximum Switching Frequency			1800 operations/hour	1800 operations/hour
Allowable Contact Power	Resistive Load		AC: 660VA/DC: 90W	AC: 1100VA/DC: 150 W
	Inductive Load	$\cos \emptyset=0.3, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$	AC: 176VA/DC: 45 W	AC: 440VA/DC: 75 W
Minimum Applicable Load			5 V DC, 10 mA (reference value)	5 V DC, 20 mA (reference value)
			24 V DC, 5mA (reference value)	24 V DC, 10 mA (reference value)
External Protection Element			Fuse 250V 3A	Fuse 250V 5A
Life	Electrical		200,000 operations minimum (220V AC, 3A)	500,000 operations minimum (220V AC, 5A)
	Mechanical		50 million operations minimum	50 million operations minimum

[^0]Operating Temperature - Maximum Switching Current Characteristics
Check the derating curve described below when mounting more than two GT5Y-2 timers and SM2S-05* sockets.

General Specifications

Model		GT5Y- \square SN
Operation		ON Delay / Interval ON / Cycle OFF / Cycle ON
Pollution Degree		2 (IEC60664-1)
Overvoltage Category		III (IEC60664-1)
Rated Operational Voltage	A200	200 to 240V AC ($50 / 60 \mathrm{~Hz}$)
	A100	100 to 120V AC (50/60Hz)
	D24	24V DC
	D12	12V DC
Voltage Range	A200	170 to 264V AC (50/60Hz)
	A100	85 to 132V AC (50/60Hz)
	D24	21.6 to 26.4V DC
	D12	10.8 to 13.2V DC
Reset Voltage		Rated Voltage $\times 20 \%$ minimum
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$ (no freezing and condensation)
Storage/Transportation Temperature		-30 to $+80^{\circ} \mathrm{C}$ (no freezing and condensation)
Operating Humidity		35 to 85\% RH (no condensation)
Storage Humidity		35 to 85\% RH (no condensation)
Altitude		0 to 2000m (operation), 0 to 3000m (transportation)
Reset Time		100 ms maximum
Repeat Error		Within $\pm 0.2 \%, \pm 20 \mathrm{~ms}$
Voltage Error		Within $\pm 0.5 \%, \pm 20 \mathrm{~ms}$
Temperature Error		$\pm 3 \%$
Setting Error		$\pm 10 \%$
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Dielectric Strength		Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 1000 V AC, 1 minute
Vibration Resistance		Operating extremes: 10 to 55 Hz , amplitude 0.5 mm , 10 minutes each in 3 directions Damage limits: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions
Shock Resistance		Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$, Damage limits: $490 \mathrm{~m} / \mathrm{s}^{2}, 3$ shocks each in 6 directions
Degree of Protection		IP40 (timer), IP20 (socket) (IEC60529)
Power Consumption (approx.)	A200	1.2 VA (200V AC/60Hz), 1.2 VA (200V AC/50Hz)
	A100	1.1 VA (100V AC/60Hz), 1.2 VA (100V AC/50Hz)
	D24	1.0W
	D12	0.9W
Dimensions		$27.7 \mathrm{H} \times 21.0 \mathrm{~W} \times 58.3 \mathrm{D} \mathrm{mm}$
Weight (approx.)		42 g

Note: See Operating Temperature - Maximum Switching Current Characteristics.

Electrical Life Curves

Operation Charts and Internal Connections

Dimensions

(When using DIN Rail Mount Socket)
 GT5Y-4

See Relay Sockets catalog for SY4S-05B, SY4S-05C, SY4S-05D, SY4S-05DF.

Note 1: SY4S-05B: 83.3 max., SY4S-05C: 83.3 max., SY4S-05D: 88.3 max.,SY4S-05DF: 88.3 max
Note 2: SY4S-05B: 86.8 max., SY4S-05C: 86.8 max. SY4S-05D: 91.8 max.,SY4S-05DF: 91.8 max.

GT5Y-4 and SU4S-11L, GT5Y-2 and SU2S-11L

Applicable hold-down spring: SFA-202

GT5Y-2

See Relay Sockets catalog for SM2S-05B, SM2S-05C, SM2S-05D, SM2S-05DF.

Note 3: SM2S-05B: 83.3 max., SM2S-05C: 83.3 max., SM2S-05D: 88.3 max.,SM2S-05DF: 88.3 max.
Note 4: SM2S-05B: 86.8 max., SM2S-05C: 86.8 max., SM2S-05D: 91.8 max.,SY4S-05DF: 91.8 max.

Accessories

Accessories

Both SY4S-05C and SM2S-05C are UL recognized, CSA certified, and TÜV approved. Others are UL recognized and CSA certified, except for SY4S-05A and SM2S-05A. When ordering, specify the Ordering No.

Item		Part No.	Ordering No.	Package Quantity	Remarks
DIN Rail Mount Socket	Socket	SY4S-05B	SY4S-05A	1	For 4PDT contact
		SY4S-05C	SY4S-05C	1	For 4PDT contact
		SY4S-05D	SY4S-05D	1	For 4PDT contact
		SY4S-05DF	SY4S-05DF	1	For 4PDT contact
		SU2S-11L	SU2S-11L	1	For DPDT contact
		SU4S-11L	SU4S-11L	1	For 4PDT contact
		SM2S-05B	SM2S-05A	1	For DPDT contact
		SM2S-05C	SM2S-05C	1	For DPDT contact
		SM2S-05D	SM2S-05D	1	For DPDT contact
		SM2S-05DF	SM2S-05DF	1	For DPDT contact
	Hold-Down Spring	SFA-202	SFA-202PN20	10 sets (20 pcs)	For SY4S-05A, SM2S-05A (2 pcs/set)
		SFA-511	SFA-511PN20	20	For SY4S-05D, SY4S-05DF, SM2S-05D, SM2S-05DF
Panel/PC Board Mount Socket	Socket	SY4S-51	SY4S-51	1	For 4DPT contact, Solder Terminal
		SY4S-61	SY4S-61	1	For 4DPT contact, PC Board Terminal
		SM2S-51	SM2S-51	1	For DPDT contact, Solder Terminal
		SM2S-61	SM2S-61	1	For DPDT contact, PC Board Terminal
	Hold-Down Spring	SFA-302	SFA-302PN20	10 sets (20 pcs)	For SY4S-51, SY4S-61, SM2S-51, SM2S-61 (2 pcs/set)

GT5P saires Miniature Electronic Timers

Economic Efficiency Focused
 Delayed Output SPDT/5A

- Three operation modes: ON Delay, Cycle, and One Shot
- Repeat error: $\pm 0.2 \% \pm 10 \mathrm{~ms}$ maximum
- Complies with safety standards

UL recognized, CSA certified, TÜV approved, EN compliant

Applicable Standards	Mark	File No. or Organization
UL508	UU/C-UL recognized File No. E55996	
CSA C22.2 No.14	CS:	CSA File No. LR66809
EN61812-1	EU Low Voltage Directive	

Package Quantity: 1					
Operation Mode	Contact	Output	Time Range	Operating Voltage	Part No. (Ordering No.)
ON Delay	SPDT	$\begin{aligned} & 24 \mathrm{~V} D / \\ & 120 \mathrm{AC}, 5 \mathrm{~A} \\ & 240 \mathrm{VAC}, 3 \mathrm{~A} \end{aligned}$	35	100 to 120V AC	GT5P-N3SA100
			10 S		GT5P-N10SA100
			30S		GT5P-N30SA100
			605		GT5P-N60SA100
			3M		GT5P-N3MA100
			6M		GT5P-N6MA100
			10M		GT5P-N10MA100
			1 S	200 to 240V AC	GT5P-N1SA200
			6 S		GT5P-N6SA200
			10S		GT5P-N10SA200
			30S		GT5P-N30SA200
			60S		GT5P-N60SA200
			3M		GT5P-N3MA200
			6M		GT5P-N6MA200
			10M		GT5P-N10MA200
			1 S	24V AC/DC	GT5P-N1SAD24
			6 S		GT5P-N6SAD24
			10S		GT5P-N10SAD24
			60S		GT5P-N60SAD24
			6M		GT5P-N6MAD24
			10M		GT5P-N10MAD24
			10S	12 V DC	GT5P-N10SD12
			30S		GT5P-N30SD12
			60S		GT5P-N60SD12
			10M		GT5P-N10MD12
Cycle	SPDT	$\begin{array}{\|l} 24 \mathrm{~V} D C / \\ 120 \mathrm{VAC}, 5 \mathrm{~A} \\ 240 \mathrm{VCC} \end{array}$	35	100 to 120V AC	GT5P-F3SA100
			10S		GT5P-F10SA100
			3 S	200 to 240V AC	GT5P-F3SA200
			10S		GT5P-F10SA200
			35	$24 \mathrm{VAC/DC}$	GT5P-F3SAD24
			10S		GT5P-F10SAD24
			3 S	12 V DC	GT5P-F3SD12
			10S		GT5P-F10SD12
One Shot	SPDT	$\begin{array}{\|l\|l\|} \hline 24 V D C / \\ 120 V A C, 5 A \\ \hline \end{array}$$240 \mathrm{VAC}, 3 \mathrm{~A}$	35	100 to 120V AC	GT5P-P3SA100
			35	200 to 240V AC	GT5P-P3SA200
			10S		GT5P-P10SA200
			3 S	24V AC/DC	GT5P-P3SAD24
			10S		GT5P-P10SAD24

Time Ranges

Code	Time Range
1 S	0.1 sec to 1 sec
3 S	0.1 sec to 3 sec
6 S	0.1 sec to 6 sec
10 S	0.2 sec to 10 sec
30 S	0.5 sec to 30 sec
60 S	1 sec to 60 sec
3 M	3 sec to 3 min
6 M	6 sec to 6 min
10 M	10 sec to 10 min

Contact Ratings

Contact Configuration		SPDT
Maximum Switching Voltage		250 V AC, 150 V DC
Maximum Switching Current		5A
Maximum Switching Power		$\begin{aligned} & \text { AC: 960VA } \\ & \text { DC: 120W } \end{aligned}$
	Resistive Load	$\begin{aligned} & 120 \mathrm{~V} \text { AC / } 24 \mathrm{~V} \text { DC, } 5 \mathrm{~A} \\ & 240 \mathrm{VAC}, 3 \mathrm{~A} \end{aligned}$
	$\begin{aligned} & \text { Inductive Load } \\ & \cos \theta=0.4 \\ & L / R=15 \mathrm{~ms} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 240V AC, } 0.8 \mathrm{~A} \\ & 120 \mathrm{~V} \mathrm{AC}, 1.4 \mathrm{~A} \\ & 24 \mathrm{~V} \text { DC, } 1.7 \mathrm{~A} \end{aligned}$
$\stackrel{\text { ¢ }}{\square}$	Electrical	100,000 operations minimum (rated resistive load)
	Mechanical	20,000,000 operations minimum

Minimum Applicable Load: 5V DC 10 mA (reference value)

[^1]
General Specifications

Model		GT5P-N	GT5P-F	GT5P-P
Operation		ON Delay	Cycle	One Shot
Pollution Degree		2 (IEC60664-1)		
Rated Operational Voltage	A200	200 to 240V AC ($50 / 60 \mathrm{~Hz}$)		
	A100	100 to 120V AC (50/60Hz)		
	AD24	24 V AC ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$)/24V DC		
	D12	12V DC		
Voltage Range	A200	170 to 264V AC (50/60Hz)		
	A100	85 to 132V AC (50/60Hz)		
	AD24	20.4 to 26.4V AC ($50 / 60 \mathrm{~Hz}$)/21.6 to 26.4V DC		
	D12	10.8 to 13.2V DC		
Operating Temperature		-10 to $+50^{\circ} \mathrm{C}$ (no freezing)		
Storage Temperature		-30 to $+70^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity		35 to 85\% RH (no condensation)		
Storage Humidity		30 to 85\% RH (no condensation)		
Altitude		0 to 2000m (operation), 0 to 3000 m (transportation)		
Reset Time		100 ms maximum		
Repeat Error		$\pm 0.2 \%, \pm 10 \mathrm{~ms}$		
Voltage Error		$\pm 0.5 \%, \pm 20 \mathrm{~ms}$		
Temperature Error		$\pm 3 \%$		
Setting Error		$\pm 10 \%$		
Insulation Resistance		100 M 2 minimum (500V DC megger)		
Dielectric Strength		Between power and output terminals: 2000V AC, 1 minute Between contacts of different poles: 2000V AC, 1 minute Between contacts of the same pole: 750 V AC, 1 minute		
Vibration Resistance		Operating extremes: 10 to 55 Hz , amplitude 0.75 mm , 10 minutes each in 3 directions Damage limits: 10 to 55 Hz , amplitude 0.75 mm , 2 hours each in 3 directions		
Shock Resistance		Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$, Damage limits: $490 \mathrm{~m} / \mathrm{s}^{2}$		
Power Consumption (approx.)	A200	$5.0 \mathrm{VA}(60 \mathrm{~Hz})$		$5.0 \mathrm{VA}(60 \mathrm{~Hz})$
	A100	2.9 VA (60Hz)		$2.9 \mathrm{VA}(60 \mathrm{~Hz})$
	AD24	1.4 VA (60Hz)/0.5W		1.4 VA (60Hz)/0.5W
	D12	0.6 W		0.6W
Dimensions		$36 \mathrm{H} \times 29 \mathrm{~W} \times 81.5 \mathrm{D} \mathrm{mm}$		
Weight (approx.)		54 g		

Electrical Life Curves

Operation Charts and Internal Connections

Dimensions

(When using DIN Rail Mount Socket)
SR2P-05B
For SR2P-05C, see Relay Sockets catalog.

SR2P-06B

Note 1: SR2P-05C: 99.5 max.
Note 2: SR2P-05C: 103.5 max.

Mounting Hole Layout (for Panel/PC Board Mount Socket)

1. GT5Y-4

Panel Mount Socket (SY4S-51)

PC Board Mount Socket (SY4S-61)

2. GT5Y-2

Panel Mount Socket (SM2S-51)

PC Board Mount Socket (SM2S-61)
3. GT5P

Solder Terminal (SR2P-511)

Wire Wrap Terminal (SR2P-70)

Accessories

Item		Part No．	Ordering No．	Package Quantity	Remarks
DIN Rail Mount Socket	Socket	SR2P－06B	SR2P－06B	1	
		SR2P－05B	SR2P－05B	1	
		SR2P－05C	SR2P－05C	1	UL／CSA／TÜV
	Hold－Down Spring	SFA－202	SFA－202PN20	10 sets（20 pcs）	For SR2P－06A（2 pcs／set）
		SFA－203	SFA－203PN20	10 sets（20 pcs）	For SR2P－05A（2 pcs／set）
Panel Mount Socket	w／Solder Terminals	SR2P－511	SR2P－511	1	UL／CSA
	w／Wire Wrap Terminals	SR2P－70	SR2P－70	1	

Installation of Hold－Down Springs
 DIN Rail Mount Socket

Recommended Tightening Torque and Terminal Screw

Timer	Applicable Socket	Terminal Screw	Recommended Tightening Torque
GT5Y	SY4S－05 SM2S－05	M3	0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$

Note 1：Once installed into sockets，the hold－down springs cannot be removed．
Note 2：GT5P形用ソケットのSR2P－511形ソケットには，固定ばねは使用できません。
Recommended Tightening Torque and Terminal Screw

Timer	Applicable Socket	Terminal Screw	Recommended Tightening Torque
GT5P	SR2P－05	M3．5	1.0 to $1.3 \mathrm{~N} \cdot \mathrm{~m}$

Panel／PC Board Mount Socket

The SFA－302 Hold－Down Springs can be installed to the SY4S－51， SY4S－61，SM2S－51，and SM2S－61 sockets．

Hold－down springs cannot be installed to SR2P－511 and SR2P－70 panel mount sockets．

Installation／Removal of Hold－Down Springs
（Installation）
Insert the hold－down springs（SFA－511）into mounting holes
1 and 2 with the projection facing outside．

（Removal）
Press the projections of Hold－Down Springs（SFA－511）in the direction shown in the arrow and pull upward to remove．

Installation／Removal of Hold－Down Springs

（Installation）
Insert the springs（SFA－511）into mounting holes 1 and 2 with the projection facing outside．

（Removal）
Press the projections of Hold－Down Springs（SFA－511）in the direction shown in the arrow and pull upward to remove．

Note：Apply the same method to SY4S－05DF．

. Safety Precautions

- Be sure to turn off power before mounting, removal, wiring, maintenance and inspection. Otherwise, electric shock or fire could occur.
- Be sure to use timers within rated specification values. Otherwise, electric shock or fire may occur.
- Be sure to use wires to meet voltage and current requirements and tighten M3.5 terminal screws to a tightening torque of 1.0 to $1.3 \mathrm{~N} \cdot \mathrm{~m}$. Be sure to solder the terminals correctly. Loose terminal screws or incomplete soldering may cause abnormal heat and fire.

Instructions

Time Range Setting

The time range is calibrated at its maximum time scale, therefore it is desirable to use the timer at a setting as close to its maximum time scale as possible for accurate time delay. For a more accurate time delay, adjust the control knob by measuring the operating time with a watch before application.
On the GT5Y timers, a desired time range can be selected using the time range selectors on the side surface. Turn the multiplier and time unit selectors using a flat screwdriver until they click.

Timing Accuracy

Timing accuracies are calculated from the following formulas:
Repeat Error
$= \pm \frac{1}{2} \times \frac{\text { Max. measured value }- \text { Min. measured value }}{\text { Maximum scale value }} \times 100(\%)$
Voltage Error
$= \pm \frac{\mathrm{Tv}-\mathrm{Tr}}{\mathrm{Tr}} \times 100(\%) \quad \begin{aligned} & \mathrm{Tv} \text { Tverage of measured values at voltage } \mathrm{V} \\ & \mathrm{Tr}: \text { Average of measured values at the raged voltage }\end{aligned}$
Temperature Error
$= \pm \frac{\mathrm{Tt}-\mathrm{T}_{20}}{\mathrm{~T}_{20}} \times 100(\%) \quad \mathrm{Tt}$: Average of measured values at $\mathrm{t}^{\circ} \mathrm{C}$
T_{20} : Average of measured values at $20^{\circ} \mathrm{C}$
Setting Error
$=\underline{\text { Average of measured values - Set value }}$
$=\frac{\text { Maximum scale value }}{\text { Averalue }} \times 100(\%)$

Use of External Input (GT5P-P Only)

1. Do not apply voltage to external input terminals 3 and 4 . Be sure not to connect external inputs to other terminals because the internal circuit may be damaged.
2. Use reliable mechanical contacts capable of switching approximately 22 V DC, 1 mA to close input terminals 3 and 4 .
(Closed: $1 \mathrm{k} \Omega$ maximum, Open: $100 \mathrm{k} \Omega$ minimum) The input terminals should not be connected to a ground wire of other devices.
3. Do not install input lines in parallel with high-voltage or motor lines. Use shielded wires or separate conduit for input lines, and make the input lines as short as possible.

Load Current

The rated current of the contact (or control output) should not be exceeded. Especially for inductive, capacitive, and incandescent lamp loads, the inrush current as large as a few to several tens times the rated current may cause welded contacts and other troubles. The amount of inrush current as well as steady-state current must be taken into consideration.

Contact Protection

Switching an inductive load generates a counter-electromotive force in the coil. The counter emf will cause arcing, which may shorten the contact life. Application of a protection circuit is recommended for contact protection.

Rest Time

When turning power off after time-out, allow a rest time of 0.1 sec , and during operation, 1 sec at least.

Power

Since DC types are designed to operate on DC power containing 10\% or less ripple, insert a smoothing circuit when using a rectified AC power to operate DC type timers.

Continuous Energizing

Continuous energizing for a long period of time may damage the electrical characteristics of the timer because of internal heating. Use an additional relay to the output circuit and refrain from continuous energizing of the timer.

Dielectric Strength Test

When performing an insulation resistance or dielectric strength test on control panels containing timers, make sure that the dielectric strength of the timer is not exceeded. In case the dielectric strength is exceeded, remove the timers from the panels.

Operating Environment

Temperature and Humidity

Use the timer within the operating temperature and operating humidity ranges and prevent freezing and condensation. After storing below the operation temperature, leave the timer at room temperature for a sufficient period of time before use.

Environment

Prevent a corrosive gas such as sulfurous or ammonia gas, organic solvents (alcohol, benzine, thinner, etc.), strong alkaline substances or strong acids from touching to the timer, and do not use the timer in such an environment. Keep the timer from water splashes or steam.

Vibration and Shock

Since excessive vibrations or shocks cause the output contacts to open, the timer should be used within the operating extremes of vibration and shock resistance. Use of hold-down springs is recommended for secure mounting on sockets.

Others

- Use a mechanical-contact switch or relay to supply power to the time.
- When driving the timer using a solid-state output device such as two-wire proximity switch, photoelectric switch or solid-state relay directly, malfunction may be caused by a leakage current from the solid-state device. Be sure to check thoroughly before using.
- Since AC types (such as A100 and A200) comprise a capacitive load, the SSR dielectric strength should be two or more times as large as the power voltage when switching the timer power using an SSR.
- To make a sequence circuit by connecting timer and relay, check the timer operation sufficiently in consideration of the reset time of the timer.

[^0]: Note: See Operating Temperature - Maximum Switching Current Characteristics.

[^1]: Note: S and M of time range indicate second and minute respectively.

